publications

A list of publications in journals and conference proceedings, by year of publication for published articles, and year of submission for preprints. A list of works is also available on Google Scholar.

Copyright note. This material is presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by the copyright holders. All persons accessing this information are expected to adhere to the terms and constraints invoked by each case’s copyright. Unless permitted by the license, these works may not be copied or re-posted without explicit permission.

2024

  1. Decentralized Fusion of Experts Over Networks
    Marco Carpentiero, Vincenzo MattaStefan Vlaski, and Ali H. Sayed
    In Proc. of 2024 IEEE 34th International Workshop on Machine Learning for Signal Processing (MLSP), 2024
  2. Matching centralized learning performance via compressed decentralized learning with error feedback
    Roula Nassif, Marco Carpentiero, Stefan VlaskiVincenzo Matta, and Ali H. Sayed
    In Proc. of 2024 IEEE 25th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2024
  3. Nonconvex Multitask Learning Over Networks
    Stefan Vlaski, and Roula Nassif
    In Proc. of 2024 32nd European Signal Processing Conference (EUSIPCO), 2024
  4. Non-Bayesian Social Learning with Multiview Observations
    Proc. of 2024 63rd IEEE Conference on Decision and Control (CDC), Dec 2024
  5. Differential Error Feedback for Communication-Efficient Decentralized Optimization
    Roula NassifStefan Vlaski, Marco Carpentiero, Vincenzo Matta, and Ali H. Sayed
    In Proc. of 2024 IEEE 13rd Sensor Array and Multichannel Signal Processing Workshop (SAM), Dec 2024
  6. Roula Nassif, Stefan Vlaski, Marco Carpentiero, Vincenzo Matta, Ali H. Sayed
    Differential learning
    available as arXiv:2406.18418, Dec 2024
  7. Learning Dynamics of Low-Precision Clipped SGD with Momentum
    Roula NassifSoummya Kar, and Stefan Vlaski
    In Proc. of 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Dec 2024
  8. Learned Finite-Time Consensus for Distributed Optimization
    Aaron Fainman, and Stefan Vlaski
    In Proc. of 2024 32nd European Signal Processing Conference (EUSIPCO), Dec 2024

2023

  1. Exact Subspace Diffusion for Decentralized Multitask Learning
    Shreya Wadehra, Roula Nassif, and Stefan Vlaski
    In Proc. of 2023 62nd IEEE Conference on Decision and Control (CDC), Dec 2023
  2. Enforcing Privacy in Distributed Learning With Performance Guarantees
    Elsa Rizk, Stefan Vlaski, and Ali H. Sayed
    IEEE Transactions on Signal Processing, Dec 2023
  3. Privatized graph federated learning
    Elsa Rizk, Stefan Vlaski, and Ali H. Sayed
    EURASIP Journal on Advances in Signal Processing, Dec 2023
  4. Quantization for Decentralized Learning Under Subspace Constraints
    Roula NassifStefan Vlaski, Marco Carpentiero, Vincenzo Matta, Marc Antonini, and Ali H. Sayed
    IEEE Transactions on Signal Processing, Dec 2023
  5. Attacks on Robust Distributed Learning Schemes via Sensitivity Curve Maximization
    Christian A. Schroth, Stefan Vlaski, and Abdelhak M. Zoubir
    In Proc. of 2023 24th International Conference on Digital Signal Processing (DSP), Dec 2023
  6. Robust Network Topologies for Distributed Learning
    Chutian Wang, and Stefan Vlaski
    In Proc. of 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Dec 2023
  7. Robust M-Estimation Based Distributed Expectation Maximization Algorithm with Robust Aggregation
    Christian A. Schroth, Stefan Vlaski, and Abdelhak M. Zoubir
    In Proc. of 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Dec 2023
  8. Multi-Agent Adversarial Training Using Diffusion Learning
    Ying Cao, Elsa Rizk, Stefan Vlaski, and Ali H. Sayed
    In Proc. of 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Dec 2023
  9. Local Graph-Homomorphic Processing for Privatized Distributed Systems
    Elsa Rizk, Stefan Vlaski, and Ali H. Sayed
    In Proc. of 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Dec 2023
  10. Optimal Aggregation Strategies for Social Learning Over Graphs
    Ping Hu, Virginia BordignonStefan Vlaski, and Ali H. Sayed
    IEEE Transactions on Information Theory, Dec 2023
  11. Self-Aware Social Learning Over Graphs
    Konstantinos Ntemos, Virginia BordignonStefan Vlaski, and Ali H. Sayed
    IEEE Transactions on Information Theory, Dec 2023
  12. Decentralized Adversarial Training over Graphs
    available as arXiv:2303.01936, Dec 2023
  13. Networked Signal and Information Processing: Learning by Multiagent Systems
    Stefan VlaskiSoummya KarAli H. Sayed, and José M. F. Moura
    IEEE Signal Processing Magazine, Dec 2023
  14. Learning from Heterogeneous Data Based on Social Interactions over Graphs
    IEEE Transactions on Information Theory, Dec 2023

2022

  1. Distributed Bayesian Learning of Dynamic States
    available as arXiv:2212.02565, Dec 2022
  2. Explainability and Graph Learning From Social Interactions
    Valentina Shumovskaia, Konstantinos Ntemos, Stefan Vlaski, and Ali H. Sayed
    IEEE Transactions on Signal and Information Processing over Networks, Dec 2022
  3. Federated Learning Under Importance Sampling
    Elsa Rizk, Stefan Vlaski, and Ali H. Sayed
    IEEE Transactions on Signal Processing, Dec 2022
  4. Social Learning with Disparate Hypotheses
    Konstantinos Ntemos, Virginia BordignonStefan Vlaski, and Ali H. Sayed
    In Proc. of 2022 30th European Signal Processing Conference (EUSIPCO), Dec 2022
  5. Finite Bit Quantization for Decentralized Learning Under Subspace Constraints
    Roula NassifStefan Vlaski, Marc Antonini, Marco Carpentiero, Vincenzo Matta, and Ali H. Sayed
    In Proc. of 2022 30th European Signal Processing Conference (EUSIPCO), Dec 2022
  6. Robust and Efficient Aggregation for Distributed Learning
    Stefan Vlaski, Christian Schroth, Michael Muma, and Abdelhak M. Zoubir
    In Proc. of 2022 30th European Signal Processing Conference (EUSIPCO), Dec 2022
  7. Distributed Relatively Smooth Optimization
    Sofia Jegnell, and Stefan Vlaski
    In Proc. IEEE Conference on Decision and Control (CDC), Dec 2022
  8. Federated Learning under Importance Sampling
    Elsa Rizk, Stefan Vlaski, and Ali H. Sayed
    IEEE Transactions on Signal Processing, Dec 2022
  9. Optimal Combination Policies for Adaptive Social Learning
    Ping Hu, Virginia BordignonStefan Vlaski, and Ali H. Sayed
    In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Dec 2022
  10. Decentralized Learning in the Presence of Low-Rank Noise
    Roula NassifVirginia BordignonStefan Vlaski, and Ali H. Sayed
    In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Dec 2022
  11. Hidden Markov Modeling Over Graphs
    Mert KayaalpVirginia BordignonStefan Vlaski, and Ali H. Sayed
    In Proc. IEEE Data Science and Learning Workshop (DSLW), Dec 2022
  12. Social Learning with Disparate Hypothesis
    Konstantinos Ntemos, Virginia BordignonStefan Vlaski, and Ali H. Sayed
    In Proc. European Signal Processing Conference (EUSIPCO), Dec 2022
  13. Explainability and Graph Learning from Social Interactions
    Valentina Shumovskaia, Konstantinos Ntemos, Stefan Vlaski, and Ali H. Sayed
    available as arXiv:2203.07494, Dec 2022
  14. Optimal Aggregation Strategies for Social Learning over Graphs
    Ping Hu, Virginia BordignonStefan Vlaski, and Ali H. Sayed
    available as arXiv:2203.07065, Dec 2022
  15. Dif-MAML: Decentralized Multi-Agent Meta-Learning
    Mert KayaalpStefan Vlaski, and Ali H. Sayed
    IEEE Open Journal of Signal Processing, Dec 2022

2021

  1. Second-Order Guarantees of Stochastic Gradient Descent in Non-Convex Optimization
    Stefan Vlaski, and Ali H. Sayed
    IEEE Transactions on Automatic Control, Dec 2021
  2. Self-aware Social Learning over Graphs
    Konstantinos Ntemos, Virginia BordignonStefan Vlaski, and Ali H. Sayed
    available as arXiv:2110.13292, Dec 2021
  3. Distributed Meta-Learning with Networked Agents
    Mert KayaalpStefan Vlaski, and Ali H. Sayed
    In Proc. European Signal Processing Conference (EUSIPCO), Dec 2021
  4. Competing Adaptive Networks
    Stefan Vlaski, and Ali H. Sayed
    In Proc. IEEE Statistical Signal Processing Workshop (SSP), Dec 2021
  5. Gramian-Based Adaptive Combination Policies for Diffusion Learning Over Networks
    Y. Efe Erginbas, Stefan Vlaski, and Ali H. Sayed
    In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Dec 2021
  6. Social Learning Under Inferential Attacks
    Konstantinos Ntemos, Virginia BordignonStefan Vlaski, and Ali H. Sayed
    In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Dec 2021
  7. Network Classifiers Based on Social Learning
    In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Dec 2021
  8. Optimal Importance Sampling for Federated Learning
    Elsa Rizk, Stefan Vlaski, and Ali H. Sayed
    In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Dec 2021
  9. Graph-Homomorphic Perturbations for Private Decentralized Learning
    Stefan Vlaski, and Ali H. Sayed
    In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Dec 2021
  10. Regularized Diffusion Adaptation via Conjugate Smoothing
    Stefan VlaskiLieven Vandenberghe, and Ali H. Sayed
    IEEE Transactions on Automatic Control, Dec 2021
  11. Systems and methods for reducing noise caused by stimulation artifacts in neural signals received by neuro-modulation devices
    Dejan MarkovićAli H. Sayed, Sina Basir-Kazeruni, Stefan Vlaski, and Hawraa Salami
    US Patent US10980487B2, Dec 2021
  12. Deception in Social Learning
    Konstantinos Ntemos, Virginia BordignonStefan Vlaski, and Ali H. Sayed
    available as arXiv:2103.14729, Dec 2021
  13. Distributed Learning in Non-Convex Environments — Part II: Polynomial Escape From Saddle-Points
    Stefan Vlaski, and Ali H. Sayed
    IEEE Transactions on Signal Processing, Dec 2021
  14. Distributed Learning in Non-Convex Environments — Part I: Agreement at a Linear Rate
    Stefan Vlaski, and Ali H. Sayed
    IEEE Transactions on Signal Processing, Dec 2021
  15. Online Graph Learning from Social Interactions
    Valentina Shumovskaia, Konstantinos Ntemos, Stefan Vlaski, and Ali H. Sayed
    In Proc. Asilomar Conference on Signals, Systems, and Computers, Dec 2021

2020

  1. Second-Order Guarantees in Federated Learning
    Stefan Vlaski, Elsa Rizk, and Ali H. Sayed
    In Proc. Asilomar Conference on Signals, Systems, and Computers, Dec 2020
  2. Tracking Performance of Online Stochastic Learners
    Stefan Vlaski, Elsa Rizk, and Ali H. Sayed
    IEEE Signal Processing Letters, Dec 2020
  3. Dynamic Federated Learning
    Elsa Rizk, Stefan Vlaski, and Ali H. Sayed
    In Proc. International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Dec 2020
  4. Linear Speedup in Saddle-Point Escape for Decentralized Non-Convex Optimization
    Stefan Vlaski, and Ali H. Sayed
    In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Dec 2020
  5. Multitask Learning Over Graphs: An Approach for Distributed, Streaming Machine Learning
    Roula NassifStefan VlaskiCédric RichardJie Chen, and Ali H. Sayed
    IEEE Signal Processing Magazine, Dec 2020
  6. Learning Over Multitask Graphs—Part II: Performance Analysis
    Roula NassifStefan VlaskiCédric Richard, and Ali H. Sayed
    IEEE Open Journal of Signal Processing, Dec 2020
  7. Learning Over Multitask Graphs—Part I: Stability Analysis
    Roula NassifStefan VlaskiCédric Richard, and Ali H. Sayed
    IEEE Open Journal of Signal Processing, Dec 2020
  8. Adaptation and Learning Over Networks Under Subspace Constraints—Part II: Performance Analysis
    Roula NassifStefan Vlaski, and Ali H. Sayed
    IEEE Transactions on Signal Processing, Dec 2020
  9. Second-Order Guarantees in Centralized, Federated and Decentralized Nonconvex Optimization
    Stefan Vlaski, and Ali H. Sayed
    Communications in Information and Systems, Dec 2020
  10. Multi microphone wall detection and location estimation
    Mohamed Mansour, Srivatsan Kandadai, and Stefan Vlaski
    US Patent US10598543B1, Dec 2020
  11. Adaptation and Learning Over Networks Under Subspace Constraints—Part I: Stability Analysis
    Roula NassifStefan Vlaski, and Ali H. Sayed
    IEEE Transactions on Signal Processing, Dec 2020

2019

  1. Polynomial Escape-Time from Saddle Points in Distributed Non-Convex Optimization
    Stefan Vlaski, and Ali H. Sayed
    In Proc. IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Dec 2019
  2. Distributed Learning over Networks under Subspace Constraints
    Roula NassifStefan Vlaski, and Ali H. Sayed
    In Proc. Asilomar Conference on Signals, Systems, and Computers, Dec 2019
  3. Enhanced Diffusion Learning Over Networks
    Ricardo Merched, Stefan Vlaski, and Ali H. Sayed
    In Proc. European Signal Processing Conference (EUSIPCO), Dec 2019
  4. Diffusion Learning in Non-convex Environments
    Stefan Vlaski, and Ali H. Sayed
    In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Dec 2019
  5. Distributed Inference over Networks under Subspace Constraints
    Roula NassifStefan Vlaski, and Ali H. Sayed
    In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Dec 2019
  6. A Regularization Framework for Learning Over Multitask Graphs
    Roula NassifStefan VlaskiCédric Richard, and Ali H. Sayed
    IEEE Signal Processing Letters, Dec 2019
  7. Stochastic Learning Under Random Reshuffling With Constant Step-Sizes
    Bicheng Ying, Kun Yuan, Stefan Vlaski, and Ali H. Sayed
    IEEE Transactions on Signal Processing, Dec 2019

2018

  1. Distributed Inference Over Multitask Graphs Under Smoothness
    Roula NassifStefan Vlaski, and Ali H. Sayed
    In Proc. IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Dec 2018
  2. Online Graph Learning From Sequential Data
    Stefan Vlaski, Hermina P. Maretić, Roula NassifPascal Frossard, and Ali H. Sayed
    In Proc. IEEE Data Science Workshop (DSW), Dec 2018

2017

  1. A blind Adaptive Stimulation Artifact Rejection (ASAR) engine for closed-loop implantable neuromodulation systems
    Sina Basir-Kazeruni, Stefan Vlaski, Hawraa Salami, Ali H. Sayed, and Dejan Marković
    In Proc. International IEEE/EMBS Conference on Neural Engineering (NER), Dec 2017
  2. On the performance of random reshuffling in stochastic learning
    Bicheng Ying, Kun Yuan, Stefan Vlaski, and Ali H. Sayed
    In Proc. Information Theory and Applications Workshop (ITA), Dec 2017

2016

  1. The brain strategy for online learning
    Stefan Vlaski, Bicheng Ying, and Ali H. Sayed
    In Proc. IEEE Global Conference on Signal and Information Processing (GlobalSIP), Dec 2016
  2. Stochastic gradient descent with finite samples sizes
    Kun Yuan, Bicheng Ying, Stefan Vlaski, and Ali H. Sayed
    In Proc. IEEE International Workshop on Machine Learning for Signal Processing (MLSP), Dec 2016
  3. Diffusion stochastic optimization with non-smooth regularizers
    Stefan VlaskiLieven Vandenberghe, and Ali H. Sayed
    In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Dec 2016

2015

  1. Proximal diffusion for stochastic costs with non-differentiable regularizers
    Stefan Vlaski, and Ali H. Sayed
    In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Dec 2015

2014

  1. Robust bootstrap based observation classification for Kalman Filtering in harsh LOS/NLOS environments
    Stefan Vlaski, and Abdelhak M. Zoubir
    In Proc. IEEE Workshop on Statistical Signal Processing (SSP), Dec 2014
  2. Robust bootstrap methods with an application to geolocation in harsh LOS/NLOS environments
    Stefan VlaskiMichael Muma, and Abdelhak M. Zoubir
    In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Dec 2014