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ABSTRACT

Smoothness conditions, either on the cost itself or its gradi-
ents, are ubiquitous in the development and study of gradient-
based algorithms for optimization and learning. In the context
of distributed optimization and multi-agent systems, smooth-
ness conditions and gradient bounds are additionally central
to controlling the effect of local heterogeneity. We devi-
ate from this paradigm and study distributed learning prob-
lems in relatively smooth environments, where cost functions
may grow faster than a quadratic, and gradients need not be
bounded. We generalize gradient noise conditions to cover
this setting, and present convergence guarantees in relatively
smooth and relatively convex environments. Numerical re-
sults corroborate the findings.

Index Terms— Distributed learning, relative smoothness,
federated learning, mirror descent, stochastic optimization.

1. INTRODUCTION AND RELATED WORKS

We consider a collection of K agents, where each agent k is
equipped with a distinct, local cost function Jk(w). We define
the aggregate optimization problem:

J(w) ≜
1

K

K∑
k=1

Jk(w) (1)

Our aim is to pursue an optimal solution to this global opti-
mization problem in the sense that:

wo ≜ argmin
w

J(w) = argmin
w

1

K

K∑
k=1

Jk(w) (2)

In the absence of communication constraints, one may pursue
wo by means of gradient descent:

wi = wi−1 − µ∇J(wi−1) (3)

Classical convergence guarantees for gradient descent are
derived under smoothness conditions on the gradient of the
form:

∥∇J(x)−∇J(y)∥ ≤ δ∥x− y∥ (4)
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For smooth loss functions satisfying (4), one can establish
sublinear and linear convergence for convex and strongly-
convex loss functions respectively [1]. Condition (4) can be
equivalently formulated as:

J(y) ≤ J(x) +∇J(x)T(y − x) +
δ

2
∥x− y∥2 (5)

When the cost J(w) is not differentiable, one may instead
resort to subgradient recursions, where sublinear conver-
gence is classically established under Lipschitz conditions on
the cost J(·) itself, rather than its (sub)gradient [2]. Such
conditions are equivalent to assuming uniformly bounded
(sub)gradients. In this work, we are interested in optimizing
aggregate cost functions, which are differentiable, but do not
satisfy the smoothness conditions (4)–(5). Instead, we will
consider the recently introduced, and more general, relative
smoothness condition [3, 4]:

J(y) ≤ J(x) +∇J(x)T(y − x) + δDh (y, x) (6)

Here, Dh (y, x) denotes the Bregman divergence:

Dh (y, x) = h(y)− h(x)−∇h(x)T (y − x) (7)

where h(·) is a 1-strongly convex proximity function ensur-
ing [4]:

Dh(y, x) ≥
1

2
∥x− y∥2 (8)

Condition (6) is a direct generalization of (5). Indeed, set-
ting h(x) ≜ 1

2∥x∥
2 yields Dh (y, x) = 1

2∥x − y∥2 and re-
covers (5) from (6) exactly. We note that while the analogy
between Dh(y, x) and the Euclidean distance 1

2∥x− y∥2 can
provide useful intuition, Dh(y, x) is not in fact a distance and
as such does not satisfy several critical properties. For exam-
ple, it is not symmetric in general, and does not satisfy the
triangle inequality. We refer the reader to [3, 4] for a detailed
discussion on relative smoothness, as well as a collection of
examples. It is advocated in [3, 4], to pursue minimizers of
relatively smooth cost functions by means of the generalized
gradient scheme:

wi ≜ argmin
w

∇J(wi−1)
T(w − wi−1) +

1

µ
Dh (w,wi−1)

(9)



For µ ≤ 1
δ , the right-hand side of (9) is, in light of (6), an

upper bound of J(w) around J(wi−1), and hence we can
view (9) as a majorization-minimization scheme. Again, by
setting h(x) = 1

2∥x∥
2, we recover the ordinary gradient algo-

rithm (3). We note that the generalized gradient scheme (9)
is significantly older than the notion of relative smoothness
introduced in [3, 4]. Indeed, it has been introduced much
earlier under the name mirror-descent [5] and has since been
studied extensively including composite and accelerated [6]
as well as stochastic subgradient-based variants [7]. While
this line of work illustrates the strength and flexibility of the
generalized gradient scheme (9), the focus there has not been
on relatively smooth functions satisfying (6), and the results
generally rely on Lipschitz conditions on the gradient [6] or
uniformly bounded stochastic (sub)gradients [7]. More recent
works have provided convergence guarantees for centralized
stochastic mirror descent in more general settings, focusing
on relative continuity [8,9] and relative smoothness with uni-
formly bounded gradient noise variance [10]. In contrast, we
will develop distributed schemes for the optimization of rela-
tively smooth functions by generalizing the results of [3,4] to
a federated setting.

1.1. Distributed Optimization

So far, we have disregarded communication constraints, and
have focused on the centralized mode of operation, where
a full gradient ∇J(·) is evaluated at every iteration, which
requires central aggregation of gradients ∇Jk(w) from all
agents. Distributed algorithms avoid full central aggregation
and can be broadly classified into two architectures. Fed-
erated approaches employ central aggregation of partial in-
formation from the network, for example by probing a ran-
dom subset of agents at any given iteration, and averaging
their gradients or update to obtain a stochastic estimate of the
true gradient recursion (3) [11,12]. Decentralized approaches
avoid central aggregation altogether, and instead rely on local
(stochastic) gradient updates followed by peer-to-peer inter-
actions [13–20]. Distributed algorithms based on mirror de-
scent have been introduced as well, and can be decomposed
based on whether they involve the exchange of local primal
estimates wk,i [21,22] or the dual counterpart ∇h(wk,i) [23–
25]. All works on distributed mirror descent employ Lipschitz
conditions, either on the gradients or the cost itself (implying
a uniform gradient bound). As such, they do not apply to the
relatively smooth setting (6) considered here. The aim of this
work is to provide a framework and convergence guarantee
for distributed optimization of relatively smooth functions. To
this end, we will introduce new, relaxed gradient noise con-
ditions, which are necessary to study the convergence of dis-
tributed relatively smooth optimization algorithms, and pro-
vide convergence analysis under this condition in the feder-
ated setting.

2. PROBLEM AND ALGORITHM FORMULATION

We return to the aggregate optimization problem (1) and con-
sider a federated setting. At each iteration i, the server se-
lects a subset Li of L agents (sampled without replacement),
each with equal probability, and provides them with the cur-
rent model wi−1. Note that we now employ boldface notation
to emphasize the fact that the models wi−1, as a result of ran-
dom agent participation, will be random themselves. Each
participating agent k ∈ Li then performs a generalized gradi-
ent update (9) along its local gradient obtaining to find wk,i:

wk,i = argmin
w

∇Jk(wi−1)
T(w −wi−1) +

Dh (w,wi−1)

µ
(10)

The optimality conditions (10) yield the well-known equiva-
lent representation in the dual mirror domain [5]:

∇h(wk,i) = ∇h(wi−1)− µ∇Jk(wi−1) (11)

As in [23, 24], the agents send the dual estimates back to the
server, where they are aggregated as:

∇h(wi) =
1

L

∑
k∈Li

∇h(wk,i)

=
1

L

∑
k∈Li

∇h(wi−1)− µ
1

L

∑
k∈Li

∇Jk(wi−1)

=∇h(wi−1)− µ
1

L

∑
k∈Li

∇Jk(wi−1) (12)

Inverting the same optimality argument that led to (11), we
can conclude equivalently that:

wi = argmin
w

∇̂J(wi−1)
T(w −wi−1) +

1

µ
Dh (w,wi−1)

(13)

where we defined the stochastic gradient approximation:

∇̂J(wi−1) ≜
1

L

∑
k∈Li

∇Jk(wi−1) (14)

This insight provides justification for exchanging and aver-
aging the mirror maps ∇h(wk,i), rather than the primal es-
timates wk,i. In this way, the distributed algorithm can be
viewed as a centralized mirror descent algorithm, which uti-
lizes a stochastic estimate of the gradient defined in (14). This
fact will be central to the convergence analysis that follows.
It does not, however, allow us to apply results from the lit-
erature on centralized stochastic mirror descent [7–10]. This
is because the conditions on the gradient approximation em-
ployed in [7–10], are in general not satisfied by the gradient
approximation ∇̂J(wi−1), resulting from federated sampling
of relatively smooth functions. We will illustrate this in the se-
quel, and proceed to present an alternative gradient noise con-
ditions for distributed optimization along with performance
guarantees.



3. ANALYSIS

3.1. Modeling Conditions

We introduce the gradient noise term:

si(wi−1) = ∇̂J(wi−1)−∇J(wi−1) (15)

We can then immediately verify that:

E {si(wi−1)|wi−1} = 0 (16)

The critical quantity, which determines performance in most
stochastic optimization algorithms, is then the variance
E
{
∥ si(wi−1)∥2|wi−1

}
. We propose the following con-

dition:

Assumption 1 (Relative Gradient Noise Variance Bound).
The gradient noise process si(wi−1) satisfies the variance
bound:

E
{
∥ si(wi−1)∥2|wi−1

}
≤ 2β2Dh(w

o,wi−1) + σ2 (17)

for some β, σ ≥ 0.

The condition merits some discussion and comparison
with related works. For β2 = 0, we recover:

E
{
∥ si(wi−1)∥2|wi−1

}
≤ σ2 (18)

which corresponds to the most classical condition on gradient
noise variance, employed for example in [7,10]. In the special
case where β, σ > 0, but h(·) = 1

2∥ · ∥
2, we recover:

E
{
∥ si(wi−1)∥2|wi−1

}
≤ β2∥wo −wi−1 ∥2 + σ2 (19)

which corresponds to the relative gradient noise bounds stud-
ied in [14, 15]. Allowing for a relative component β2∥wo −
wi−1 ∥2 or 2β2Dh(w

o,wi−1) + σ2 turns out to be critical to
allow for gradient noise components to grow in variance away
from the minimum wo. This is necessary, for example, in the
case of least mean squares [15].

Comparison with the condition employed in [8, 9], re-
quires slight reformulation. The authors there impose:

E
{
∥∇̂J(x)∥2|x

}
≤ G2 Dh(y,x)

1
2∥y − x ∥2

(20)

for some G > 0 and all x, y. By conditional independence,
we have:

E
{
∥∇̂J(x)∥2|x

}
= ∥∇J(x)∥2 + E

{
∥ si(x)∥2|x

}
(21)

Hence, relation (20) imposes a bound on both the gradient
norm ∥∇J(x)∥2 and the gradient noise E

{
∥ si(x)∥2|x

}
.

For general choices of h(·), the right-hand side of (20) may
grow with x. For h(·) = 1

2∥ · ∥
2 the bound simplifies to:

E
{
∥ si(x)∥2|x

}
≤ G2 (22)

and hence, in contrast to (17), allows for no relative growth of
the gradient noise variance when h(·) = 1

2∥ · ∥
2.

In addition to the gradient noise condition in Assump-
tion 1, we formally state the relative smoothness and convex-
ity conditions as assumptions [3, 4]:

Assumption 2. The global objective function is δ-smooth rel-
ative to h(·), i.e. for all x, y:

J(y) ≤ J(x) +∇J(x)T(y − x) + δDh(y, x) (23)

Additionally, we require the objective function to be ν-
strongly convex relative to h(·), i.e. for all x, y:

J(y) ≥ J(x) +∇J(x)T(y − x) + νDh(y, x) (24)

3.2. Convergence Analysis

Our argument essentially follows that of [4], after accounting
for the terms arising from the gradient noise and the fact that
mirror descent in the presence of gradient perturbations is no
longer a true descent method. The proof is provided in the
appendix.

Theorem 1 (Convergence Guarantee). Under Assump-
tions 1 and 2, we have:

min
n=0,...,i

EJ(wn)− J(wo)

≤ 1

µ
∑i−1

n=0 γ
−n

Dh(w
o, wo) + µσ2 (25)

where γ ≜ 1− µν + 2µ2β2.

Proof. Appendix A.

We note that
∑i−1

n=0 γ
−n forms a divergent geometric

sum, and hence 1 implies linear convergence. To verify this,
observe that:

1∑i−1
n=0 γ

−n
=

γ−1 − 1

γ−i − 1
=

γi−1 − γi

1− γi
≈ γi−1 (1− γ)

(26)

where the approximation is accurate for large i.

4. NUMERICAL EXAMPLE

We consider a regularized least-squares problem, where each
agent is equipped with:

Jk(w) =
1

2
∥bk −Akw∥22 +

ρ1
2
∥w∥22 +

ρ2
4
∥w∥44 (27)

The aggregate objective is then given by:

J(w) =
1

2K

K∑
k=1

∥bk −Akw∥22 +
ρ1
2
∥w∥22 +

ρ2
4
∥w∥44 (28)



One direct approach to establishing an appropriate proxim-
ity function for J(w) in this particular case is to examine its
Hessian matrix ∇2J(w) and verify the equivalent conditions
ν∇2h(w) ⪯ ∇2J(w) ⪯ δ∇2h(w) [3, 4]. We have:

∇2J(w) =
1

K

K∑
k=1

AT
kAk + ρ1I +

ρ2
4
∇2∥w∥44 (29)

If we set δ = max
{
λmax

(
1
K

∑K
k=1 A

T
kAk

)
+ ρ1, ρ2

}
and

ν = min
{
λmin

(
1
K

∑K
k=1 A

T
kAk

)
+ ρ1, ρ2

}
, it then follows

that J(w) is δ-smooth and ν-strongly convex relative to the
proximity function:

h(w) =
1

2
∥w∥22 +

1

4
∥w∥44 (30)

We conclude that J(w) satisfies Assumption 2. To verify the
gradient noise condition in Assumption 1 we observe:

E
{
∥ si(w)∥2|w

}
= E


∥∥∥∥∥ 1L ∑

k∈L

∇Jk(w)−∇J(w)

∥∥∥∥∥
2

|w

 (31)

We introduce the participation indicator 1k,i, indicating
whether agent k has been chosen to participate at iteration i.
If agent k participates, we have 1k,i = 1, and 1k,i = 0 oth-
erwise. Since L agents are chosen at each iteration, we have∑K

k=1 1k,i = L with probability one, and since agents are
chosen with equal probability, we have Pr {1k,i = 1} = L

K .
It then follows that:

E
{
∥ si(w)∥2|w

}
= E


∥∥∥∥∥ 1L ∑

k∈L

∇Jk(w)−∇J(w)

∥∥∥∥∥
2

|w


= E


∥∥∥∥∥ 1L

K∑
k=1

1k,i (∇Jk(w)−∇J(w))

∥∥∥∥∥
2

|w

 (32)

The difficulty in evaluating (32) is that, since agents are sam-
pled without replacement, the participation indicators 1k,i are
not pairwise independent. Nevertheless, following argument
analogous to [26, Lemma 1], we can establish:

E
{
∥ si(w)∥2|w

}
=

1

KL

K − L

K − 1

K∑
k=1

∥∇Jk(w)−∇J(w)∥2

(33)

Relation (33) captures the interplay between the participation
rate K

L and the level of heterogeneity 1
K

∑K
k=1 ∥∇Jk(w) −

∇J(w)∥2. Finally, we bound the local heterogeneity:

∥∇Jk(w)−∇J(w)∥2

=

∥∥∥∥∥AT
kAk w−

(
1

K

K∑
k=1

AT
kAk

)
w

∥∥∥∥∥
2

=

∥∥∥∥∥
(
AT

kAk − 1

K

K∑
k=1

AT
kAk

)
(w−wo + wo)

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥
(
AT

kAk − 1

K

K∑
k=1

AT
kAk

)∥∥∥∥∥
2

∥wo −w∥2

+ 2

∥∥∥∥∥
(
AT

kAk − 1

K

K∑
k=1

AT
kAk

)
wo

∥∥∥∥∥
2

(a)

≤ 4

∥∥∥∥∥
(
AT

kAk − 1

K

K∑
k=1

AT
kAk

)∥∥∥∥∥
2

Dh(w
o,w)

+ 2

∥∥∥∥∥
(
AT

kAk − 1

K

K∑
k=1

AT
kAk

)
wo

∥∥∥∥∥
2

(b)
= β2

kDh(w
o,w) + σ2

k (34)

where in (a) we made use of 1-strong convexity of Dh(·,w),
and in (b) we introduced:

β2
k ≜ 4

∥∥∥∥∥
(
AT

kAk − 1

K

K∑
k=1

AT
kAk

)∥∥∥∥∥
2

(35)

σ2
k ≜ 2

∥∥∥∥∥
(
AT

kAk − 1

K

K∑
k=1

AT
kAk

)
wo

∥∥∥∥∥
2

(36)

Returning to (33), we conclude that the construction satisfies
the proposed gradient noise condition in Assumption 1 with:

β2 =
1

KL

K − L

K − 1

K∑
k=1

β2
k (37)

σ2 =
1

KL

K − L

K − 1

K∑
k=1

σ2
k (38)

Note in particular that the relative component β2
kDh(w

o,w)
in (34) is necessary to account for the unbounded growth in
heterogeneity as w moves away from wo.

4.1. Simulation Results

We simulate the numerical example for a collection of K =
100 agents with participation rate of L

K = 10%. We set
ρ1 = ρ2 = 0.1. The regressor matrix Ak, for each agent k, is
generated by filling its rows with N = 5 normally distributed
samples ak ∼ N (0, I10) ∈ R10, resulting in A ∈ R5×10. We
similarly generate wtrue ∈ N (0, I10) and measure:

dk = Akw
true + vk (39)
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Fig. 1: Learning curve when initializing close to the origin
(bv = 1). Iterates remain close to the origin, where gradients
are approximately Lipchitz continuous, resulting in compara-
ble performance of both approaches.

where vk ∈ N (0, 0.1I5). The step-size for all implementa-
tions is set to µ = 0.1. All quantities are randomly sampled
once prior to simulating the algorithm, and then kept fixed
throughout. The only remaining randomness arises from the
sampling of agents at each iteration. We average over 10 runs.
We compare the federated mirror descent scheme (13) to the
federated averaging algorithm [12] based on ordinary gradient
updates as a baseline. We present two runs of the algorithm,
differing only in the initialization:

w0 = bv ·
(
1 1 · · · 1

)T ∈ RM (40)

In Fig. 1 we show a sample learning curve when both algo-
rithms are initialized close to the origin (bv = 1). We ob-
serve comparable performance between the schemes. This is
consistent with empirical observations on the convergence of
gradient-based algorithms in the absence of global smooth-
ness conditions. In the vicinity of the origin, the gradients
of the objective function are locally approximately Lipschitz
continuous. As long as the gradients of the objective are lo-
cally smooth over a subset of the solutions space, and iter-
ates of the algorithm do not leave this subset, one can expect
gradient-based algorithms to perform well. We contrast this
in Fig. 2, where both algorithms are initialized slightly further
from the origin (bv = 10). This change in initialization is suf-
ficient to drive the gradient-based federated averaging scheme
unstable, while the federated mirror descent algorithm (13)
remains stable and exhibits comparable performance.

5. CONCLUSION

We have presented a linear convergence guarantee of a fed-
erated mirror descent algorithm in relatively smooth and rela-
tively convex environments. To this end, we introduced a gen-
eralized condition on the gradient noise process, and quanti-
fied the effect of this noise on downstream algorithm perfor-
mance. A numerical example illustrated the practical advan-
tage of the proposed approach.
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Fig. 2: Learning curve when initializing far from the origin
(bv = 10, all other parameters fixed). The scheme based
on federated averaging and ordinary gradient descent diverges
due to lack of local smoothness.

A. PROOF OF THEOREM 1

From (23), we have:

J(wi)

≤ J(wi−1) +∇J(wi−1)
T(wi −wi−1) + δDh(wi,wi−1)

≤ J(wi−1) + ∇̂J(wi−1)
T(wi −wi−1) + δDh(wi,wi−1)

+
(
∇J(wi−1)− ∇̂J(wi−1)

)T
(wi −wi−1)

≤ J(wi−1) + ∇̂J(wi−1)
T(wi −wi−1) + δDh(wi,wi−1)

+ (si(wi−1))
T
(wi −wi−1) (41)

We bound terms individually. Beginning with the term in-
volving the gradient noise, we have:

(si(wi−1))
T
(wi −wi−1)

(a)

≤ µ∥si(wi−1)∥2 +
1

4µ
∥wi −wi−1 ∥2

(b)

≤ µ∥si(wi−1)∥2 +
1

2µ
Dh(wi,wi−1) (42)

where (a) follows from Young’s inequality and (b) follows
from 1-strong convexity of Dh(·,wi−1). Upon taking condi-
tional expectation, we can further bound:

E

{(
∇J(wi−1)− ∇̂J(wi−1)

)T
(wi −wi−1)|wi−1

}
≤ µE

{
∥si(wi−1)∥2|wi−1

}
+

1

2µ
E {Dh(wi,wi−1)|wi−1}

≤ 2µβ2Dh(w
o,wi−1) + µσ2

+
1

2µ
E {Dh(wi,wi−1)|wi−1} (43)

For the term involving the stochastic gradient, we employ
Tseng’s three-point-property [6, Property 1]. It states that,



if:

wi = argmin
w

ϕ(w) +Dh(w,wi−1) (44)

then for all w:

ϕ(w) +Dh(w,wi−1)

≥ ϕ(wi) +Dh(wi,wi−1) +Dh(w,wi) (45)

If we set ϕ(w) = µ∇̂J(wi−1)
T(w −wi−1), then (44) holds

in light of (13). After rearranging, we can conclude:

∇̂J(wi−1)
T(wi −wi−1)

≤ ∇̂J(wi−1)
T(wo −wi−1) +

1

µ
Dh(w

o,wi−1)

− 1

µ
Dh(wi,wi−1)−

1

µ
Dh(w

o,wi) (46)

Upon taking expectations:

E
{
∇̂J(wi−1)

T(wi −wi−1)|wi−1

}
≤∇J(wi−1)

T(wo −wi−1) +
1

µ
E {Dh(w

o,wi−1)|wi−1}

− 1

µ
E {Dh(wi,wi−1)|wi−1} −

1

µ
E {Dh(w

o,wi)|wi−1}

(47)

where we used the fact that:

E
{
∇̂J(wi−1)

T(wo −wi−1)|wi−1

}
= E

{
∇̂J(wi−1)|wi−1

}T

(wo −wi−1)

=∇J(wi−1)
T
(wo −wi−1) (48)

Putting everything together, we can bound (41) after taking
conditional expectations and grouping terms as:

E {J(wi)|wi−1}
≤ J(wi−1) + E {δDh(wi,wi−1)|wi}

+∇J(wi−1)
T(wo −wi−1) +

1

µ
E {Dh(w

o,wi−1)|wi−1}

− 1

µ
E {Dh(wi,wi−1)|wi−1} −

1

µ
E {Dh(w

o,wi)|wi−1}

+ 2µβ2Dh(w
o,wi−1) +

1

2µ
E {Dh(wi,wi−1)|wi−1}

+ µσ2

= J(wi−1) +∇J(wi−1)
T(wo −wi−1)

+

(
1

µ
+ 2µβ2

)
E {Dh(w

o,wi−1)|wi−1}

−
(

1

2µ
− δ

)
E {Dh(wi,wi−1)|wi−1}

− 1

µ
E {Dh(w

o,wi)|wi−1}+ µσ2 (49)

Since Dh(wi,wi−1) ≥ 0, whenever µ ≤ 1
2δ , we further

have:

E {J(wi)|wi−1}
≤ J(wi−1) +∇J(wi−1)

T(wo −wi−1)

+

(
1

µ
+ 2µβ2

)
E {Dh(w

o,wi−1)|wi−1}

− 1

µ
E {Dh(w

o,wi)|wi−1}+ µσ2 (50)

Finally, relative strong convexity (24) guarantees:

J(wi−1) +∇J(wi−1)
T(wo −wi−1)

≤ J(wo)− νDh(w
o,wi−1) (51)

ensuring:

E {J(wi)|wi−1}
≤ J(wo)

+

(
1

µ
− ν + 2µβ2

)
E {Dh(w

o,wi−1)|wi−1}

− 1

µ
E {Dh(w

o,wi)|wi−1}+ µσ2 (52)

Rearranging and taking expectations to remove conditioning
yields the critical inequality:

EJ(wi)− J(wo) ≤
(
1

µ
− ν + 2µβ2

)
EDh(w

o,wi−1)

− 1

µ
EDh(w

o,wi) + µσ2 (53)

We introduce:

γ =

1
µ − ν + 2µβ2

1
µ

= 1− µν + 2µ2β2 (54)

Then, with proper scaling, relation (53) can be used in a tele-
scoping sum to obtain:

i∑
n=1

γ−n (EJ(wn)− J(wo))

≤ 1

µ
Dh(w

o, w0) + µσ2 ·

(
i∑

n=1

γ−n

)
(55)

From minn=0,...,iEJ(wn) ≤ EJ(wn) for all n = 0, . . . , i,
we conclude:(

i∑
n=1

γ−n

)(
min

n=0,...,i
EJ(wn)− J(wo)

)

≤ 1

µ
Dh(w

o, w0) + µσ2 ·

(
i∑

n=1

γ−n

)
(56)

Theorem 1 follows after rearranging.
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